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Hydrostatic pressure (HP) regulates diverse cell behaviors including differentiation,
migration, apoptosis, and proliferation. Abnormal HP is associated with pathologies
including glaucoma and hypertensive fibrotic remodeling. In this review, recent advances
in quantifying and predicting how cells respond to HP across several tissue systems are
presented, including tissues of the brain, eye, vasculature and bladder, as well as articu-
lar cartilage. Finally, some promising directions on the study of cell behaviors regulated
by HP are proposed. [DOI: 10.1115/1.4043947]
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1 Introduction

Cells in their native micro-environments experience a broad
range of mechanical cues, including stretch, compression, hydro-
static pressure, and shear stress[1–5]. Micro-environmental hydro-
static pressure (HP) is an important cellular cue both in vivo and
in vitro, playing a vital role in regulating cell behaviors such as
differentiation, migration, apoptosis, and proliferation [6–11]. HP
is an especially important cue for the development and homeosta-
sis of cells in the central nervous system, eyes, cardiovascular
system, cartilage, and bladder [12–19]. The range of physiological
HP differs substantially across tissues, and the source of cell type-
specific regulation has been the focus of significant research
efforts [20–24]. Despite this broad range, locally abnormal HP
can induce disease: high HP can induce vesicoureteral reflux and
deterioration of the upper urinary tract [25]. HP is an important
cue for development and for reconstitution of gradations of cell
phenotypes in tissue engineering [26–32]. It is thus necessary to
understand how both physiological and pathological HP affect
cell behaviors.

Quantitatively, HP is related to the trace of the stress tensor r at
a point within a tissue: p� ¼ �ð1=3Þtrace rð Þ, where the negative
sign represents the definition that positive pressure is compressive.
However, what is typically important for a biological system is
what is sometimes termed gage pressure, p, namely the differen-
tial between absolute HP p� and atmospheric pressure.

Recent, significant experimental efforts in vitro have uncovered
how HP regulates key cell behaviors in brain, eye, vascular, blad-
der, and articular cartilage tissues, and shown how the responses
of cells in these tissues to HP can differ substantially. In bovine
aortic endothelial cells (BAECs), elevated HP elongates cells
without inducing cell orientation or cytoskeletal rearrangement
[33]. Increasing HP promotes proliferation of human bladder
smooth muscle cells (SMCs) by upregulating micro ribonucleic
acid (RNA) 4323 and MiR 3180-5p [34,35]. Elevated HP
increases intracellular Ca2þ and upregulates the transient receptor
potential vanilloid-1 channel of retinal ganglion cells, resulting in
cell apoptosis [36]. Loading with long-term HP enhances the dif-
ferentiation of ATDC5 cells to chondrocyte [37]. Elevated HP

increases the volume of lung cancer A549 and CL1-5 cells [38],
but decreases the volume of leukemia K562 and HL60 cells [39].
There is a pressing need to understand what drives these diverse
HP-regulated cell behaviors.

Although reviews of HP in articular cartilage tissue engineering
exist [27], and a review of the role of ion channels in cellular
mechanotransduction of HP does as well [40], there is still a need
for a large-scale overview of observations of and models for HP-
regulated cell behaviors, which is the thrust of this paper. The
review begins with an introduction of HP as an important mechan-
ical cue in the cell micro-environment. In the Sec. 2, the state-of-
art advances in the in vitro experimental approaches and results
about HP-regulated cell behaviors are reviewed, with focus on
cells in brain, vascular, cartilaginous, eye, and bladder tissues.
Thereafter, theories about how cells respond to HP through tuning
cell volume are briefly summarized. The review concludes with
some future perspectives.

2 Hydrostatic Pressure in Native Cell

Micro-Environments

Hydrostatic pressure plays significant roles across in function
across hierarchies, from tissue/organs to cells. We begin discus-
sion of the roles of HP in pathology with a summary of hierarchi-
cal structures of several key tissues, and of the physiological
range of HP in the cell micro-environment of these tissues. In
each of these, a change to the relevant physiological HP can lead
to a complicated multi-axial change to the stress field in the cell
micro-environment.

2.1 Brain. The brain contains a multitude of tissues, sepa-
rated by substantial barriers including the falx and tentorium, and
heavily vascularized (Fig. 1(a)). Intracranial pressure (ICP) is the
HP inside the cranium (Fig. 1(b)), which is normally in the range
of 7–15 mmHg (0.93–1.99 kPa) for a supine adult at rest [41]. A
key factor in brain pressure is the balance between production and
drainage of cerebrospinal fluid. Elevated ICP in the cranium
(20–25 mmHg, 2.66–3.33 kPa) can shift brain structures such as
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the tencephalon, diencephalon, cerebellum, and medulla, and
restrict blood supply to the brain [42]. Human brain is composed
primarily of two broad classes of cells, i.e., neurons (Fig. 1(c))
and glial cells. Elevated ICP is associated with a range of severe
pathologies, including hydrocephalus, hypoxemia, and herniation
of the brain.

2.2 Eye. The eye contains an anterior segment, made up of
the iris and lens, the cornea, and a posterior segment (Fig. 1(d)).
The wall of posterior segment has three layers, i.e., sclera, cho-
roid, and retina layers, from distal (outer) to proximal (inner)
(Fig. 1(e)). Intraocular pressure (IOP) is the fluid pressure inside

the eye, which is mainly determined by the difference between the
production and the drainage of aqueous humor [46]. The normal
range of IOP is about 10–20 mmHg (1.33–2.66 kPa), while ele-
vated IOP (>21 mmHg, 2.79 kPa) is recognized as a threat for ret-
inal ganglion cell pathology (Fig. 1(f)) and associated optic nerve
damage and vision loss [47].

2.3 The Cardiovascular System. There are three main types
of blood vessels, i.e., veins, arteries, and capillaries (Fig. 1(g)).
Arteries and veins have three layers [48] (Fig. 1(h)): the tunica
adventitia (largely collagen and elastin), the tunica media (largely
smooth muscle cells, elastin, and collagen), and the tunica intima

Fig. 1 Native cell micro-environments for cells that commonly experience substantial hydrostatic pressure: (a) the brain, (b)
brain parenchyma, and (c) neurons [43]; (d) the eye, (e) eye wall tissue, and (f) retinal cells [17]; (g) blood vessel, (h) blood ves-
sel wall tissues, and (i) blood vessel endothelial cells [44]; (j) the bladder, (k) bladder wall tissues, and (l) bladder wall smooth
muscle cells [35]; and (m) joints, (n) articular cartilage, and (o) chondrocyte cells [45]. Scale bar is 100 lm. Image (i) repro-
duced, with permission, from Ref. [44].
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(largely endothelial cells) (Fig. 1(i)). The blood vessel in vivo is
exposed to various mechanical stimulations, specifically, shear
stress as induced by blood flow, mechanical stretch due to vascu-
lar wall compliance, and blood pressure resulting from contain-
ment of blood within the vasculature. Normal adult blood pressure
is about 120 mmHg (16 kPa) at the peak of the cardiac cycle (sys-
tole), and 80 mmHg (11 kPa) at diastole [49]. HP for endothelial
cells is the blood pressure, which varies over the cardiac cycle and
may change due to normal variations in daily activity and due to
pathologies that induce hypotension (blood pressure less than
90 mmHg (11.97 kPa) in systole or less than 60 mmHg (7.98 kPa)
in diastole [50]) and hypertension (blood pressure more than
160 mmHg (21.3 kPa) in systole or more than 100 mmHg
(13.3 kPa) in diastole [51]). Hypertension thickens and stiffens the
blood vessel wall and increases the risk of rupture. Further, hyper-
tension induces fibrotic remodeling, including cardiac fibrosis.

2.4 Bladder. The bladder is a hollow distensible organ for
collecting and storing urine from the kidneys (Fig. 1(j)). Urine
enters the bladder via the two ureters that are connected to the
kidneys and exits via the urethra. Typically, the adult human blad-
der can hold 300–500 mL of urine. The bladder wall has four
layers, i.e., mucosa, submucosa, muscularis, and serosa, from
inside to outside (Fig. 1(k)). Because the contraction of SMCs in
the muscularis plays an important role in maintaining bladder
function, these SMCs have attracted the most attention (Fig. 1(l)).
SMCs of the bladder are subjected to periodic HP, which
increases when the urine volume increases in the bladder. When
HP rises up to �40 cm H2O (4 kPa) [52] (Table 1), SMCs will be
stimulated to contract, resulting in the expulsion of urine through
the urethra. Finally, HP will return to the point at which there is
nearly no differential with atmospheric pressure, and another
cycle starts. Spinal cord injury can cause elevated HP, which fur-
ther induces vesicoureteral reflux and deterioration of the upper
urinary tract [25].

2.5 Articular Cartilage. Articular cartilage is an avascular
tissue that transfers compressive mechanical load in a joint
(Fig. 1(m)). The tissue consists of chondrocyte cells in a matrix of
proteoglycans and collagen fibers (Figs. 1(n) and 1(o)). The
mechanical micro-environment of chondrocytes is well modeled
by the biphasic model of tissue mechanics [70,71], with compres-
sive stress borne by hydraulic resistance of the flow of interstitial
fluid. The key determinant of the time-varying micro-environment
of chondrocytes is thus time-dependent HP [72,73]. In vivo, the
range of HP in articular cartilage is about 5–6 MPa in gait and can
reach 18 MPa during running and jumping [74].

3 Engineering Cell Micro-Environment of Hydrostatic

Pressure In Vitro

For the aforementioned range of tissues, HP is a critical driving
force for the cell micro-environment. Technologies for modulat-
ing HP in vitro are thus crucial to mimicking the native cell
mechanical micro-environment. Three techniques have been used
to modulate HP in vitro: the gas pressure method, the syringe
method, the media height method [40].

3.1 Gas Pressure Method (Gas Pressurization). Hydro-
static pressure can be applied by gas pressure supplied by gas
pump. A gas pressurization system can consist of a cell culture
chamber, a pressure gage, a pressure-control, and a pump
supplying a mixture of 95% air and 5% CO2 [75] (Fig. 2(a)).
More intricate designs are available as well, including electronic
controls and a pressure transducer to enable cyclic HP [25]. In this
method, pH, pO2, and pCO2 are controlled based off of measure-
ments from a blood gas analyzer to ensure that these factors do
not affect the HP-regulated cell behavior. This approach can pro-
vide a relatively large range of pressure change (�0–10 MPa).

3.2 Syringe Method (Solid Pressurization). The syringe
method achieves HP loading by pressurizing cell culture media
into a pressure chamber via a syringe, and monitoring the pressure
via a gage [76] (Fig. 2(b)). This method can provide both positive
(compressive) pressure and negative (tensile) pressure. The appli-
cation of negative pressure has certain benefits for wound healing,
and existing systems can apply negative pressures to both wounds
and cultured cells at pressures of –50 mmHg (–6.65 kPa) [44].
Cyclic HP can be obtained by driving a syringe pump. A chal-
lenge associated with this method is maintaining the 5% CO2 and
95% air mixture used for long-term cell culture.

3.3 Media Height Method (Liquid Pressurization). The
media height uses a static column of cell culture media to
modulate HP. One shortcoming of this method is that the nutri-
tion, pH, pO2, pCO2, and gas concentration distribution can
change with the height of media. For instance, the pO2 and pCO2

can increase by 3% and 7%, respectively, as HP increases from
0.3 to 10 cm H2O (30 Pa–1 kPa) [77]. To address this, a HP plat-
form is designed to maintain constant gas concentration by perus-
ing Kreb’s solution (Fig. 2(c)) [78]. An additional shortcoming
that has yet to be addressed is that flowing cell culture media
brings the issue of potential shear stress effects on the cells under
study. It is worth noting that the HP may dependently vary with

Table 1 Hydrostatic pressure micro-environment in native cell micro-environment

Tissues Value Period

Blood vessel Adult 0.6–1 s [56]
10.6–16.0 kPa (systolic pressure) [53–55];
7.98–12.0 kPa (diastolic pressure) [53–55]

Infant Shorter than adult [57]
9.31–13.3 kPa (systolic pressure) [57];
3.99–5.99 kPa (diastolic pressure) [57]

Bladder 0–4.00 kPa [52,58]

Eye 1.33–2.93 kPa (adult) [59] 24 h [61,62]
1.06–2.93 kPa (infant) [60]

Articular cartilage 5–6 MPa (gait) [63] 0.1–1 s [64]
18 MPa (running or jumping) [63]

Brain 0.67–2.00 kPa (healthy supine adult) [36,65] 0.82–1 s [57,66]
0.4–0.93 kPa (child) [65] 0.56–0.73 s [57]
0.20–0.80 kPa (infant) [65] 0.42–0.51 s [57]

Lung �0.5 to 2.5 kPa (transpulmonary pressure) [67,68] 3.5–9.5 s [69]
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the gas tension (e.g., oxygen tension) in culture medium [79]. Spe-
cially designed apparatus is needed to separate the effects of HP
and gas tension.

4 Response of Cells to Hydrostatic Pressure In Vitro

The responses of cells to HP vary dramatically from tissue to
tissue. A number of these responses have been studied in vitro. In
this section, experimental findings about HP-regulated cell behav-
iors in brain tissues, eye tissues, blood vessels, bladder tissues,
and articular cartilage are summarized.

4.1 Hydrostatic Pressure-Regulated Behaviors of Brain
Cells. Exploring the injury mechanism of central nervous system
cells caused by HP might improve understanding of the patho-
physiology in brain tissues. Here, some current studies on HP-
induced behaviors of neurons and glial cells are summarized. HP
of 40 kPa with 25 lM of hemoglobin significantly decreases
neuron viability (Fig. 3(a)) and increases lactate dehydrogenase
release (Fig. 3(b)) [43]. Furthermore, these conditions upregulate
piezo-2 expression, which reaches a plateau at 8 h [43], and
increases adenosine triphosphate (ATP) release of human neurons
(Fig. 3(c)) [80]. In contrast, HP has little influence on the ATP
release of human astrocytes [80]. Increased HP increases expres-
sion of messenger RNA (mRNA) for aquaporin (AQP1), serotonin
receptor 5 A (HTR5A), and voltage-gated ion channels (KCNS1)
in single pyramidal cells.

4.2 Hydrostatic Pressure-Regulated Behaviors of Eye
Cells. Glaucoma is the main cause of blindness, which is charac-
terized by irreversible and progressive retinal ganglion cell (RGC)
loss [83]. The biggest threat to RGC death is the elevated IOP in

glaucoma [84]. In vitro, apoptosis of cells similar to the mouse
retinal ganglion precursor-like cell line 661W (often incorrectly
reported as the rat RGC-5 retinal ganglion cell line [85,86]) is
enhanced under HP of 30 mmHg (3.99kPa) for three days
(Fig. 3(d)) [17]. At the same time, cytochrome C content in cyto-
sol increases by �150% fold, but decreases in mitochondria by 3/
4-fold (Fig. 3(e)), likely contributing to cell death. In addition,
Drp-1 translocation, abnormal cristae depletion, and cell ATP
reduction is triggered in these cells under HP of 30 mmHg
(3.99 kPa) [81]. After elevating hydrostatic pressure, Drp-1 was
decreased by 55.6%62.2% in the cytosol while increased by
57.4%68.7% in mitochondria [81] (Fig. 3(f)). It was also shown
that directly applied HP does not cause detectable changes in sur-
vival of human RGCs [87]. These conflicting data suggest the pos-
sibility of redundant pathways for HP-induced cell death, and
point to a need for additional research in the area.

4.3 Hydrostatic Pressure-Regulated Behaviors of Vascular
Cells. Under both physiologic and pathologic conditions, HP
has been found to affect form and function of vascular endothe-
lial cells, including morphology, cytoskeletal structure, and pro-
liferation (Fig. 3(g)). BAECs exhibit elongated cell shape and
remodel their cytoskeletal structure and multilayering under HP
of 12 mmHg (1.60 kPa) for 7 days [18]. Furthermore, BAECs
exposed to HP of 50, 100, or 150 mmHg (6.65, 13.3, or
20.0 kPa) for 24 h become less circular and more tortuous
[33,88] (Figs. 3(h)–3(i)). Vascular endothelial (VE) cadherin
expression reduces under HP stimulation, and VE cadherin inhi-
bition causes elongated and tortuous cell shapes, suggesting a
role for VE cadherin in regulating endothelial cell morphology
under HP. HP stimulates the proliferation of endothelial cells.
Human umbilical vein endothelial cells increase in proliferation
when exposed to 400 Pa to HP for 4 days [89]. Under these

Fig. 2 Existing approaches for altering hydrostatic pressure in the cell micro-environment: (a) the gas
pressure method [25,75], (b) the syringe method [44,76], and (c) the media height method [77,78]
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conditions, these cells upregulate expression of integrin subunit aV .
aV antagonists block HP-induced proliferation, suggesting a role
for aV integrin in mechanotransduction of HP by endothelial cells.
However, some other studies have found no detectable effect of
elevated hydrostatic pressure (with slow depressurization) on cell
functions of BAECs by using similar methodologies [90].

4.4 Hydrostatic Pressure-Regulated Behaviors of Bladder
Cells. Bladder SMCs and endothelial cells are subjected to
dynamic HP over a physiological range whose magnitude varies
over time. This physiological range of HP environment is required
for bladder cell function. Pathologies such as certain spinal cord
injuries or bladder outlet obstruction can elevate bladder HP

Fig. 3 Hydrostatic pressure regulated cell behaviors in vitro: (a) neuron viability varies with HP of 40 kPa and application of
25 lM hemoglobin (Hb) [43], as does (b) lactate dehydrogenase release by neurons [43] and (c) bioluminescence indicating
ATP release [80]. (d) Apoptosis of retina ganglion precursor-like cells is affected by HP [17], as is the chemiluminescence
intensity of cytochrome C [17] (e) and Drp-1 [81] (f) in the cytosol and mitochondria of retina cells. (g) In blood vessel endothe-
lial cells, proliferation increases with HP [33], while (h) they become less round (lower shape index) and more tortuous [33]
and (i) VE-cadherin expression decreases [33]. (j) In the bladder, proliferation of smooth muscle cells increases with sufficient
HP [16], and (k) expression of a5-integrin is elevated at HP of 200 mmH2O (2 kPa) [82], while (l) SGK1 but not protein kinase B
(AKT) mRNA levels increase with HP above this level [58]. (m) In articular cartilage, chondrocyte viability decreases with both
the magnitude and duration of HP [19], but (n) expression of the transcription factor SOX9 increases with sufficient HP expo-
sure [37] and time-dependent variation of GRP78 protein expression in chondrocytes induced by HP [19]. Images (c, j, k, l, g,
h, i, m, o, n) reproduced, with permission, from Refs. [80], [16], [58], [33], [19], and [37].
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sufficiently to negatively influence bladder cell function or lead to
degenerative disease of the upper urinary tract.

Dynamic HP of 10, 20, or 30 kPa over 24 h enhances prolifera-
tion of human bladder SMCs in vitro (Fig. 3(j)) [16,58,82]. Fur-
thermore, expression of integrin a5 and phosphorylation of focal
adhesion kinase (FAK) also increase with HP stimulation (Fig.
3(k)), while inhibition of integrin a5 decreases the level of p-FAK
expression and eliminates HP-induced proliferation of human
bladder SMCs [82], suggesting an integrin a5-FAK signaling
pathway for HP-induced proliferation of these cells. SGK1
expression and activity are similarly increased by HP stimulation
(Fig. 3(l)), and silencing SGK1 abolishes HP-induced human
bladder SMC proliferation, suggesting a role for the PI3K/SGK1
signaling pathway in this mechanotransduction [58]. Recently,
both microRNA 4323 and MiR 3180-5p have also been found to
promote proliferation of human bladder SMCs under HP [34,35].

4.5 Hydrostatic Pressure-Regulated Behaviors of Articular
Cartilage Cells. Articular cartilage injury is a widespread prob-
lem, with defects and degeneration commonly arising from injury,
overuse, and arthritis. Cartilage tissue engineering aims to treat or
replace injured or degraded cartilage. Some of the most promising
cartilage repair strategies include application of HP to mimic the
native mechanical micro-environment of chondrocytes for tissue
engineering [27].

Hydrostatic pressure influences differentiation and viability of
chondrocytes. Excessive HP reduces chondrocyte viability
(Fig. 3(m)) [19]. Chondrocyte differentiation, as measured by
expression of the transcription factor SOX9, is enhanced by long-
term HP stimulation (Fig. 3(n)) [37]. Compared to static HP,
dynamic HP generally has superior effects on the function of
chondrocytes. Dynamic HP of 0.8 MPa (5 min on, 30 min off, for
only ten times) increases proteoglycan synthesis mRNA expres-
sion in bovine chondrocytes, while no change in collagen synthe-
sis occurs under static HP [91]. Similarly, aggrecan and collagen

II increase under 1 Hz HP of 10 MPa for 4 h, while collagen
mRNA levels decrease under static HP [92]. Collagen II and
aggrecan expression is significantly upregulated by combined
treatment with HP and growth factor TGF-b [93]. Induced by HP,
the mRNA expression of GRP78 increased significantly with a
maximum of 2.96 time than the control at 12 h [19] (Fig. 3(o)).

4.6 Hydrostatic Pressure Responses Across Cell Types.
Proliferation and apoptosis are, in general, affected by HP across
cell types, but the effects vary substantially depending upon cell
types (Fig. 4). Positive HP enhances proliferation of most kinds of
cells (e.g., osteosarcoma cells [94], bladder smooth muscle cells
[82], vascular endothelial cells [89], and jurkat cells [95]), but
leads to apoptosis of others at sufficient magnitude (e.g., retina
cells [17], jurkat cells [95]). Negative HP enhances proliferation
of a few kinds of cells (e.g., epidermal cells [96]), while apoptosis
under negative HP has not yet been reported.

5 Mathematical Models of Hydrostatic

Pressure-Regulated Cell Behaviors

In Sec. 4, we summarized the main experimental observations
of cell behaviors regulated by HP. Mathematical models are very
important to quantitatively understand cell behaviors and predict
new phenomena. In spite of the massive body of experimental
studies in vitro, there are few theories for HP-regulated cell
behaviors. Compared to other types of mechanical cues (e.g.,
stretch, compression, twist), HP predominantly induces the volu-
metric deformation without shear deformation. Theories of HP-
regulated cell volume have been developed (Fig. 5(a)) that predict
cell volume responses under HP. Control of cell volume by HP
could be a target for cancer treatment [38,97].

5.1 Osmotic Pressure. The starting point of these theories is
the work of Jacobus van’t Hoff, who received the first Nobel Prize

Fig. 4 HP regulates proliferation and apoptosis differently for different types of cells
[17,82,89,94–96]. Most types of cells proliferate at positive hydrostatic pressure, but some
types of cells are apoptotic at positive (compressive) hydrostatic pressure. A few types of
cells proliferate at negative (tensile) hydrostatic pressure; apoptosis of cells under negative
hydrostatic pressure has not been reported.
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in Chemistry for his theory of osmotic pressure in chemical equi-
librium [99]. When two solutions of different concentration are
separated by a semipermeable membrane (e.g., a cell membrane)
that allows water but not solute to pass through it, the concentra-
tion difference forces the water into the solution of higher concen-
tration, which exerts an extra pressure on the membrane. This
extra pressure is defined as osmotic pressure and can be estimated
by van’t Hoff’s theory.

A living cell in a medium with solute concentration differing
from that of the extracellular medium will have the turgor pres-
sure (DP, the force per unit area bearing on the cell wall or mem-
brane) equal to the osmotic pressure difference (DP), namely

DP ¼ DP (1)

The turgor pressure (DP) equals the hydrostatic pressure differ-
ence: DP ¼ Pi � Po, where Pi and Po are the hydrostatic pressure
inside and outside the cell, respectively. The osmotic pressure is
DP ¼ Pi �Po, Pi being the osmotic pressure inside the cell and
Po being the osmotic pressure outside the cell. van’t Hoff
observed that nonelectrolyte solute molecules in such a situation
obey the ideal gas law so that the osmotic pressure difference can
be estimated as:

DP ¼ D
N

V

� �
kBT ¼ ci � coð ÞkBT (2)

where N is the number of extra sugar molecules in the volume V,
ci � co (molecules/volume) is the concentration difference of sug-
ar, ci is the concentration inside the cell, co is the concentration
outside the cell, kB is the Boltzmann’s constant, and T is the abso-
lute temperature.

5.2 Water Flux in Response to Osmotic Pressure. For none-
quilibrium living cells exposed to external stimuli, Jiang et al. [98]
systemically discuss the cellular pressure and volume regulation by
considering ion regulation, cortical tension, and water flow. For a
spherical cell with radius r, the volume change is controlled by

dr

dt
¼ Jwater ¼ �a DP� DPð Þ (3)

where Jwater is the volumetric flux across the cell membrane, and
a is a constant representing membrane permeability.

Mechanosensitive channels and ion transporters on cell mem-
branes control the influx and efflux of ions and other osmolytes,
which play a role in cell volume and pressure regulation. The sim-
plest phenomenological model considers only one species of
mechanosensitive channel as

J1 ¼
0 ; r � rc

�b r� rcð ÞDP; rc < r < rs

�b rs � rcð ÞDP; r � rs

8><
>: (4)

where b is a constant, r is the (biaxial) membrane and cortical
stress, rc is a threshold stress below which J1 is zero, and rs is the
saturating stress above which all mechnosensitive channels open.
The model considers one species of ion transporter as

J2 ¼ cðDPc � DPÞ (5)

where DPc is the critical osmotic pressure difference and c is a
constant.

Assuming the cell membrane adheres to the cell cortex and
neglecting the dynamics of membrane structures, the cell mem-
brane and cortex are treated as a single layer. The cortical stress
that appears in the mechanical force balance is

r ¼ DPr

2h
(6)

where h is the cortical thickness. In many cells, actin under the
membrane interacting with myosin molecular motors forms a cort-
ical layer. The cortex is actively controlled through internal
stresses in the cortical layer generated by actomyosin motors
[100–102].

Fig. 5 Hydrostatic pressure-regulated cell volume: (a) theoretical model of cell volume and pressure regulation for a spheri-
cal cell. A spherical cell enclosed by an actomyosin cortex and the cell membrane. Embedded in the membrane are several
families of passive mechanosensitive ion channels (ions efflux) and active ion pumps (ions flux). The mechanosensitive chan-
nels and active ion pumps can change the internal osmotic pressure, Pin, leading to changes in internal HP, Pin. Figure mod-
eled after Ref. [98] (b) experimental and theoretical results [39]. (upper) the volume of K562 cells changed under HP of
70 mmHg (9.3 kPa), which was then removed after 2 h; (lower) comparison of theoretical normalized cell radius with the experi-
mental data. Image (b) reproduced, with permission, from Ref. [39].
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5.3 Models of Cortical Actin Contractility. There exist a
series of intricate models of cellular mechanics and contractility
exist, which have been reviewed elsewhere [103]. Although much
more intricate models of passive [104] and active [105,106] cellu-
lar mechanics exist, we review here one model of how active con-
tractility of the cortex plays a major role in controlling cell
pressure [107,108]. In mammalian cells, cortex is just below the
cell membrane, containing a large amount of actin [90,109–111].
In many cells, this actin interacts with myosin molecular motors
to form an actively contracting cortical layer [101,102,111].
Active stress generated in cortex varies with calcium influx
induced by change of membrane tension [112], with stress-
induced changes to the number of actin cross-linkers [113,114],
with cytoskeletal depolymerization due to cell stretch [103,115],
membrane domain dynamics [116], and force-dependent myosin
kinetics [117]. All of these point to a feedback mechanism
whereby changes of cell membrane tension lead to changes of
myosin contraction, ra: Tao et al. [107,108] propose that mem-
brane tension can trigger Rho activation and, in turn, further acti-
vate the myosin assembly. The contraction of myosin
monofilaments is related to the active stress

ra ¼ KmaxM (7)

where Kmax is a maximum contractile stress that cells exert and M
is the fraction of activated myosin. This relates to the kinetics of
Rho by

@q
@t
¼ a1K Tð Þ 1� qð Þ � d1q (8)

@M

@t
¼ a2 1�Mð Þq� d2M (9)

where a1 and d1 are the activation and deactivation rates of Rho,
respectively, q and M are fractions of activated Rho and myosin,
respectively, a2 and d2 are assembly and disassembly rates of the
myosin. K ¼ r� rcÞ=ðrs � rcð Þ is an activation function of q
depending on membrane tension. As above, rc is the critical mem-
brane tension where Rho activation starts and rs is a saturating
tension.

The process of myosin assembly and contraction influenced by
the sudden change of force that cell experience is modeled as

a2 ¼ a20ð1þ f ðTshearÞÞ (10)

where a20 is a constant, Tshear is the passive transient stress, which
is proportional to the flow rate in the cortex, and f ðTshearÞ is an
activation function. Active stress in the cell cortex can restore
membrane tension (maintain homeostasis). From the perspective
of Sun and coworkers model [107,108], it is not the cell mem-
brane but the cortical tension generated by cell contraction that
balances most of the pressure difference.

Additionally, actin networks in cells are viscoelastic fluids with
both solid and fluid mechanical properties [107]. The polymeriza-
tion and depolymerization of actin network are regulated by actin
crosslinking proteins [118,119]. The dynamic binding and unbind-
ing of cross-linking proteins also regulate the mechanical proper-
ties of the actin network [120,121]. The binding process will
contribute to the elasticity of the network while unbinding process
will contribute to hysteresis. In addition, factors such as filament
stiffness, entropic fluctuations, and myosin molecular motors
could also regulate actin network rheology [122–127]. An active
literature exists on active actin network contractility at the cell
membrane [128,129].

These factors all fall under the broad rubric of mechanotrans-
duction, the transduction of mechanical force into intracellular
biochemical signals. Actin cytoskeleton dynamics plays a key role

in this [103,130]. Recently, using a microfluidic device that
mechanically compresses live cells, He et al. [131] find that uniax-
ial compression can influence RhoA activity through a Ca2þ

dependent pathway regulated by TRPV4 channels. This is mod-
eled by considering membrane tension, myosin contraction, and
TRPV4 and RhoA kinetics in response to compression. The mem-
brane tension r could be found using a force balance normal to
the surface

2 rahþ rð ÞH � Dp ¼ Fext=A (11)

where H is the cell surface mean curvature, Fext is the external
mechanical force, and A is the area over which the external force
is distributed. A Hill function f r; sð Þ ¼ rn=ðsþ rnÞ is used to
represent how stress-dependent TRPV4 opening affects RhoA
kinetics

dq
dt
¼ k1f r; sð Þ 1� qð Þ � k2q (12)

where k1;2 are rate constants for activation and deactivation, s is
an activation threshold for membrane tension, and q is the propor-
tion of active RhoA.

5.4 Models of How Cortical Actin Contractility Affects
Pressure-Volume Relations. The volume of cells of leukemia
cell lines K562 and HL60 in suspension decreases under HP stim-
ulation [39] (Fig. 5(b)). To explain this phenomenon, Hui et al.
[39] modify Jiang’s model [98] (Eq. (3)) to include bending, sur-
face energy, and ion transport

dr

dt
¼ �a�

 
cout � cNa tð Þ � cK tð Þ � r3

0

r3
c0

res

� �
kBT

þ 2

r
ractivehþ K

r2 � r2
u

r2
u

 !!
(13)

where a� represents membrane permeability, cout � cNa tð Þ � cK tð Þ�
ðr3

0=r3Þc0
res represents the cross-membrane difference in ionic con-

centrations (number of extra ions within the volume 4pr3), rh is the
membrane tension multiplied by the membrane thickness, r is the
cell radius, ru is the radius that the cell would adopt in the absence of
mechanical stress, and K is an areal modulus. Osmotic pressure DP
is expressed, following van’t Hoff, as:

DP tð Þ ¼ � cout � cin tð Þ½ �kBT (14)

Before the pressure shock is introduced, Eqs. (3), (6), and (13)
combine to yield

2r0h

r0

¼ �a� cout � cNa 0ð Þ � cK 0ð Þ � c0
res

� �
kBT

� �
(15)

For each species of ion, the ionic concentrations vary with time
according to an experimentally motivated phenomenological function

Nion tð Þ ¼ N0
ion � giondP 1� exp � t

tion

� �� �
(16)

where dP is the applied hydrostatic pressure spike, tion is a time
constant for a specific ion species, and gion is a constant. The over-
all membrane tension r is assumed to take the form

r ¼ ractive þ rpassive (17)

where ractive is the tension generated by actomyosin contraction in
the actin cortex (treated as constant) and rpassive represents the
passive stress from the deformation of the cell membrane:
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rpassive ¼ K
A tð Þ � Au

Au
(18)

where A ¼ 4pr2 is the surface area of the cell, and Au ¼ 4pr2
u is

the area of a cell with vanishing rpassive. The unstretched cell
radius can be written in terms of r0 and r0.

5.5 More Detailed Representations of Ion Transport in
Volume Regulation. Ionic flows play a vital role in regulating cell
size and shape, including Cl– ions [132,133], and Ca2þ ions, which
affect cell shape oscillations [134]. Additionally, at least one volume-
regulated anion channel, SWELL1, has been identified [135].

Florence et al. [136] systematically investigated Naþ, Kþ, and
Cl– ions and transmembrane electrical potential in cell volume
regulation. By controlling the electrical potential through a whole-
cell patch clamp experiment, they find that cell volume increases
with depolarization. Decreasing extracellular chloride concentra-
tion decreases cell volume, and exchanging sodium and potassium
in the medium increases cell volume. To model this, they consider
both the concentrations of permeable ions and the membrane
potential, and write the following for ionic fluxes:

dNn

dt
¼ 4pr2Jn (19)

where n is an ionic species (Naþ, Kþ, or Cl�), Nn is the total num-
ber of ions in species n, and Jn is the associated ion flux across the
cell membrane. Considering both the passive and active processes,
the transportation is modeled as

JNa ¼ Jp
Na þ JNKCC;Na þ JNa=K;Na (20)

JK ¼ Jp
K þ JNKCC;K þ JNa=K;K (21)

JCl ¼ Jp
Cl þ JNKCC;Cl (22)

where the passive ion fluxes, represented by the superscript p, are
related to electrochemical potential as

Jp
n ¼ gn RTln

cout

cin

� �
n

� znFVm

 !
(23)

in which cout and cin are the ion species n concentrations outside
and inside the cell, Vm is the membrane potential, F is the
Faraday’s constant, gn is the rate of ion permeation, and zn is the
valence of the ionic species.

The flux of cotransporter (NKCC) is

JNKCC;Na ¼ JNKCC;K ¼
1

2
JNKCC;Cl

¼ aNKCCRT lnCNa þ lnCK þ 2lnCClð Þ (24)

where aNKCC is s constant of transport rate. Active fluxes arise
from Naþ/Kþ pump:

JNa
K ;Na ¼ �

3

2
JNa

K ;K

¼ �aATPGVc ATPð1þ aNa=K;NaCNaÞ3 ð1þ aNa=K;K=CKÞ�2

(25)

where aATP is the pump transport rate constant, c ATP is the ATP
concentration, aNa=K;Na and aNa=K;K are constants that scale CNa

and CK , and GV describes the pump activity depending on the
potential voltage

GV ¼ 2ð1þ e�b3ðVm�b4ÞÞ�1 � 1 (26)

where b3 and b4 are constants. Models such as this that incorpo-
rate specific ion channel activity are important for the long-term

goal of identifying specific ion channels that can be blocked to tai-
lor the volumetric responses of healthy and pathological cells.

6 Conclusions and Future Perspectives

Hydrostatic pressure is an important mechanical cue in cell
micro-environment, playing significant roles in regulating cell
behaviors including differentiation, migration, apoptosis, and pro-
liferation. Models of how these are regulated through volumetric
response of cells are still emerging, but are important to under-
stand a range of pathologies. We conclude with thoughts on the
challenges and opportunities in understanding HP-regulated cell
behaviors in the future.

The first challenge is quantifying the local mechanical micro-
environment of living cells and their extracellular matrix.
Advanced technologies for doing so have potential to transform
the field. New tools are emerging continuously, such as elastic,
round microgels, which have been used to quantify compressive
forces between living cell layers and within tissues [137]. The
stress fields in a three-dimensional (3D) matrix and dynamical
mechanical behavior in living mammalian cytoplasm have been
characterized by using a nonlinear stress inference microscopy
with optical tweezers [138] and [139]. The local intracellular pres-
sure has been directly measured by using a micropressure system
[140]. Tools for measuring and specifying the time dependence of
the mechanical micro-environment are coming online [141,142].
Advanced technologies to measure local HP in living cells and
extracellular matrix can contribute to diagnosis and understanding
of pathobiology.

Although there are several in vitro HP loading platforms, these
cannot reconstitute the full complexity and heterogeneity of cells
in vivo. 3D micro-environments are essential but notoriously diffi-
cult to construct [143,144]. To solve the problem, cells can be encap-
sulated in hydrogels, which are now the most promising method to
mimic 3D cell micro-environment in vivo [29]. In addition, the cell
mechanical micro-environment in vivo also varies with time; how-
ever, most existing studies cultured cells under static HP in vitro.
Tools to prescribe and characterize the viscoelastic properties and
development of tissues are emerging [141,145,146], and represent
an important need. An omission in the many models currently in the
literature is the role of extracellular matrix elasticity in regulating
these HP-induced volumetric responses.

One major motivation for engineering HP in vitro is the devel-
opment of in vivo applications, such as regeneration of functional
tissues. For instance, craniofacial bone substitutes for implanta-
tion purposes can be fabricated by culturing chondrocytes under
HP stimulation [147]. Optimized HP stimulation is required in
regeneration of functional articular cartilage tissue. Negative HP
method significantly promotes wound healing effect by enhancing
the migration of epidermal cells [148] and epidermal cells prolif-
eration [96]. The optimized parameters of HP for wound healing
are also required. Positive HP leads to the apoptosis of some cell
types (e.g., jurkat cells [95]), and the ability to quantify and alter
HP-related volume regulation of cells may someday hold promise
for killing cancer cells.

Finally, the detailed mechanisms by which HP affects cell
behaviors continue to be a source of debate, and detailed relation-
ships between electrophysiology and volumetric response are
needed to resolve, as well as further characterization of down-
stream biochemistry. For instance, for in retinal ganglion cell
death, debate exists between whether cytochrome C or mitochon-
drial fission, Drp-1 translocation, abnormal cristae depletion, and
cell ATP reduction play crucial roles in HP regulation. For the
HP-induced cell proliferation in the bladder, debate exists about
the relative roles of integrin a5, the level of p-FAK [82], or SGK1,
MicroRNA 4323, and MiR 3180-5p [29,58,82]. To address this, it
is necessary to characterize in situ, real time and even long-term
cells behaviors in response to HP. Additionally, decoding the
detailed intracellular responses at the molecular and genetic levels
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that together build intracellular and extracellular signaling commu-
nication networks to HP will provide valuable insight.
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